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1. Introduction

Let K ⊂ Rm be a closed, convex cone and

·, ·


= [| · |] denoted the inner product [respectively, norm]
in finite-dimensional spaces. In this paper, we study a global bifurcation of periodic solutions of differential
variational inequalities (DVIs) of the form:

x′(t) = A(µ)x(t) + f

t, x(t), u(t), µ


for a.e. t ∈ [0, T ],u− u(t), Gt, x(t), µ+ F (u(t))


≥ 0 for a.e. t ∈ [0, T ], ∀ u ∈ K,

x(0) = x(T ) and u(t) ∈ K,
(1.1)

where f : [0, T ]× R2 × Rm × R2 → R2, G : [0, T ]× R2 × R2 → Rm, and F : Rm → Rm are given continuous
maps; A : R2 → R2×2 is a map defined as
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A(µ) =

cµ1 cµ2
cµ2 −cµ1


, µ = (µ1, µ2), (1.2)

while c > 0 is a fixed number and µ ∈ R2 is a parameter.
The notion of DVIs was used by Aubin and Cellina [3] in 1984. However, DVIs were first systematically

studied by Pang and Stewart [33]. It is shown that DVIs are useful for representing many applied
mathematical models including the differential complementarity problem, the variational inequality of
evolution and the extended system (see [33] for more detail).

Since K is a closed convex cone the variational inequality problem and the complementarity problem have
the same solution set (see [29]). Hence, problem (1.1) is equivalent to the following nonlinear differential
complementarity problem

x′(t) = A(µ)x(t) + f

t, x(t), u(t), µ


for a.e. t ∈ [0, T ],

K ∋ u(t) ⊥ G

t, x(t), µ


+ F (u(t)) ∈ K∗ for a.e. t ∈ [0, T ],

x(0) = x(T ),
(1.3)

where K∗ is the dual cone of K.
The early version of the differential complementarity problem is the variational inequality of evolution

which was introduced by Henry [24,25] as a class of differential inclusions known as projected differential
inclusions. Among a large number of works concerning the differential complementarity problem let us
mention the work of Hipfel [26] for the nonlinear differential complementarity problem, the work of
Heemels [23] and Camlibel [7] for the linear complementarity problem. The stability theory for differential
complementarity problem is investigated in [1,8,19,17,18] (see also the references therein).

For the study of the global bifurcation of solutions of problem (1.1) (or equivalently, problem (1.3)) we
replace (1.1) by a parameterized family of differential inclusions, and then the global bifurcation theory
for inclusions is applied. Let us recall that the multiparameter global bifurcation problem for inclusions
with compact convex set-valued mappings was first studied by Alexander and Fitzpatrick [2]. Górniewicz
and Kryszewski [21,22] extended the result for the case of acyclic set-valued mappings in finite-dimensional
spaces. Recently, Gabor and Kryszewski [14,15] studied the multiparameter global bifurcation problem for
inclusions with linear Fredholm maps of nonnegative index.

One frequently occurred in the study of global bifurcation is the problem of evaluation of that called
global bifurcation index (see, e.g. [14,30,32]). In [30] Kryszewski used the method of guiding functions to
evaluate the global bifurcation index and to describe the global structure of branches of periodic orbits for
families of differential inclusions of the form

u′(t) ∈ g(t, u(t), λ),
u(0) = u(T ),

(1.4)

where g : [0, T ] × Rn × Rk ( Rn is a upper-Carathéodory multivalued mapping with compact and convex
values. Another construction for the evaluation of the global bifurcation index (for one-parameter case of
(1.4)) via guiding functions and integral guiding functions was suggested by Loi and Obukhovskii (see [32]).
This construction also applied to study the global bifurcation of periodic solutions of DVIs with one-
parameter (see [31]).

In the present paper, after necessary preliminaries, in Section 3 by using the method of integral guiding
functions we evaluate the global bifurcation index at (0, 0) for problem (1.4) via the index of the guiding
function. From the fact that the index of the guiding function is a non-zero element we describe the global
bifurcation of solutions of (1.4). In Section 4 it is shown how the abstract result can be applied to study the
global bifurcation of solutions of (1.1).
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2. Preliminaries

2.1. Notation

Throughout this paper by the symbol C we denote the space C([0, T ]; Rn) of continuous functions and by
Lp (p ≥ 1) the space Lp([0, T ]; Rn) of pth integrable functions with usual norms:

∥x∥C = max
t∈[0,T ]

|x(t)| and ∥f∥p =
 T

0
|f(s)|p ds

 1
p

.

An open ball of radius r centered at 0 in C [Rn] is denoted by BC(0, r) [respectively, Bn(0, r)]. The unit open
ball [unit sphere] in Rn are denoted by Bn [resp., Sn−1].

Consider the space of all absolutely continuous functions x : [0, T ]→ Rn whose derivatives belong to Lp.
It is known (see, e.g. [4]) that this space can be identified with the Sobolev space W 1,p([0, T ]; Rn) endowed
with the norm

∥x∥W =

∥x∥pp + ∥x′∥pp

 1
p .

We will denote this space byW1,p. Notice that (see, e.g. [10]), for the case p = 2, the embeddingW1,2 ↩→ C is
compact. By the symbol W1,p

T we will denote the subspace of all functions x ∈ W1,p such that x(0) = x(T ).

2.2. Multimaps

Let X,Y be Banach spaces. Denote by P (Y ) [Cv(Y ),Kv(Y )] the collections of all nonempty [respectively,
nonempty closed convex, nonempty compact convex] subsets of Y .

Definition 1 (See, e.g. [5,6,20,28]). A multivalued mapping (multimap) Σ : X → P (Y ) is said to be: (i)
upper semicontinuous (u.s.c.) if for every open subset V ⊂ Y the set

Σ−1
+ (V ) = {x ∈ X : Σ (x) ⊂ V }

is open in X; (ii) closed if its graph {(x, y) ∈ X × Y : y ∈ Σ (x)} is a closed subset of X × Y ; (iii) compact,
if the set Σ (X) is relatively compact in Y .

Definition 2. Let F : X → P (Y ) be a multimap. For a given ε > 0, a continuous map f : X → Y is called
an ε-approximation of the multimap F if for each x ∈ X there exists x′ ∈ X such that ϱX(x, x′) < ε and

f(x) ∈ Oε(F(x′)),

for all x ∈ X, where Oε(M) is the ε-neighborhood of the set M .

It is easy to see that the ε-approximation may be equivalently defined as the map whose graph belongs to
the ε-neighborhood of the graph of the corresponding multimap.

Proposition 1 (See, e.g. [6,28]). For each u.s.c. multimap F : X → Cv(Y ) and ε > 0 there exists a
continuous map fε : X → Y such that

(i) for every x ∈ X there exists x′ ∈ X such that ρ(x, x′) < ε and

fε(x) ∪ F(x) ⊂ Oε(F(x′));

(ii) fε(X) ⊂ coF(X), where co denotes the convex hull of a set.
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2.3. Variational inequalities

Let H be a real Hilbert space with inner product

·, ·


and norm ∥ · ∥; K ⊂ H be a closed convex subset.
Let us recall that a mapping g : K → H is said to be:

(a) continuous on finite-dimensional subspaces if it is continuous on K ∩ U for every finite-dimensional
subspace U of H with K ∩ U ̸= ∅. (Notice that every continuous mapping from K to H is continuous
on finite-dimensional subspaces)

(b) pseudo-monotone if for any x, y ∈ K,


x− y, g(y)


≥ 0 implies


x− y, g(x)


≥ 0.

(c) monotone if


x− y, g(x)− g(y)


≥ 0 for all x, y ∈ K.

(d) strongly monotone if there exists β > 0 such that


x− y, g(x)− g(y)


≥ β∥x− y∥2 for all x, y ∈ K.

(e) coercive if 
x, g(x)


∥x∥

→ ∞ as ∥x∥ → ∞ and x ∈ K.

Lemma 1 (See, Lemma 2.1 [9]). Let g : K → H be a pseudo-monotone mapping which is continuous on
finite-dimensional subspaces. Then w ∈ K is a solution of

u− w, g(w)

≥ 0 for all u ∈ K

if and only if 
u− w, g(u)


≥ 0 for all u ∈ K.

Lemma 2 (See, Lemma 3.1 [29]). Let K be a closed convex cone in H and g a mapping from K to H. Then
w∗ ∈ K satisfies 

u− w∗, g(w∗)

≥ 0 for all u ∈ K

if and only if

g(w∗) ∈ K∗ and

w∗, g(w∗)


= 0,

where K∗ is the dual cone of K.

Lemma 3 (See, Theorem 3.2 [9]). Let K be a closed convex cone in H and g : K → H be a coercive and
pseudo-monotone mapping which is continuous on finite-dimensional subspaces. Then there exists x∗ ∈ K
such that 

u− x∗, g(x∗)

≥ 0 for all u ∈ K.
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2.4. Linear Fredholm operators

Let X,Y be Banach spaces.

Definition 3 (See, e.g. [16]). A linear bounded operator L : domL ⊆ X → Y is called Fredholm of index
q (q ≥ 0) if

(1i) ImL is closed in Y ;
(2i) KerL and CokerL = Y/ImL have finite dimensions and, moreover,

dimKerL− dimCokerL = q

Let L : domL ⊆ X → Y be a linear Fredholm operator of index q, then there exist projectors PL : X → X
and QL : Y → Y such that ImPL = KerL and KerQL = ImL. If the operator

LPL : domL ∩KerPL → ImL

is defined as the restriction of L on domL ∩KerPL then it is clear that LPL is an algebraic isomorphism
and we may define KPL : ImL→ domL as KPL = L−1

PL
.

For the case q = 0, if we let ΠL : Y → CokerL be the canonical surjection:

ΠLz = z + ImL

and ΛL : CokerL→ KerL be a one-to-one linear mapping, then the equation

Lx = y, y ∈ Y

is equivalent to the equation

(i− PL)x = (ΛLΠL +KL)y,

where i denotes the identity operator and KL : Y → X be defined as

KL = KPL(i−QL).

2.5. Coincidence index

For reader’s convenience, we recall in this section the definition of coincidence index presented in [30] (see
also [11–13]). Firstly, let us recall the definition of the topological degree of a continuous map between two
finite-dimensional spaces (for the notion of the homotopy groups and the cohomotopy sets we refer readers
to [27,34]).

Let U ⊂ Rm be an open bounded subset and f : U → Rn a continuous map, where m ≥ n ≥ 1. Assume
that f(x) ̸= 0 for all x belonging to the boundary ∂U of the set U . Therefore, the distance d(0, f(∂U)) from
0 to the set f(∂U) in Rn is positive. Taking ρ = 1

2d(0, f(∂U)), we obtain f(∂U) ⊂ Rn \Bn(0, ρ). Hence, the
map

f :

U, ∂U


−→


Rn,Rn \Bn(0, ρ)


induces a map between cohomotopy sets

f ♯ : πn

Rn,Rn \Bn(0, ρ)


−→ πn(U, ∂U


.

Consider the following sequence of maps

πn

Rn,Rn \Bn(0, ρ)

 f♯−→ πnU, ∂U i♯1←−
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i♯1←− πn

Rm,Rm \ U

 i♯2−→ πn

Rm,Rm \Bm(0, r)


,

where r > 0 is such that U ⊂ Bm(0, r),

i1 :

U, ∂U


−→


Rm,Rm \ U


,

and

i2 :

Rm,Rm \Bm(0, r)


−→


Rm,Rm \ U


are inclusion maps.

The map i♯1 is a bijection (by the excision property), therefore according to the relations πn(Sn) =
πn

Rn,Rn \Bn(0, ρ)


and πn(Sm) = πn


Rm,Rm \Bm(0, r)


, the map

ωf = i♯2 ◦ (i♯1)−1 ◦ f ♯ : πn(Sn) −→ πn(Sm)

is well-defined.

Definition 4. The element ωf (1) ∈ πn(Sm) = πm(Sn) is called the topological degree of the map f on U and
it is denoted by deg (f, U), where 1 is the homotopy class of the identity map id : Sn → Sn in πn(Sn) ∼= Z.

Notice that the topological degree deg(f, U) does not depend on the choice of r > 0. For illustration of the
above definition let us recall an example presented in [14, Example 4.1]

Example 1. Let U = Bm and f = f|Sm−1 : Sm−1 → Rn \ Bn(0, ρ), where ρ is taken as above. Consider the
diagram

πn(Sn) ∼= πn(Rn,Rn \Bn(0, ρ))
f♯ // πn(Bm, Sm−1) ∼= πn(Sm) = // πm(Sn)

πn−1(Sn−1) ∼= πn−1(Rn \Bn(0, ρ))
f
♯

//

δ1∼=

OO

πn−1(Sm−1) = //

δ

OO

πm−1(Sn−1)

Σ

OO

where δ, δ1 are the respective coboundary operators and Σ is the suspension homomorphism. This diagram
is commutative. Therefore, if f : (Bm, Sm−1) → (Rn, Sn−1), then deg(f,Bm) = Σ ([f ]) ∈ πm(Sn), where
[f ] ∈ πm−1(Sn−1) is the homotopy class of f : Sm−1 → Sn−1.

Now let X,Y be Banach spaces; U ⊂ X an open bounded subset; L : X → Y a linear Fredholm map
of index q ≥ 0 and F : U → Kv(Y ) a compact u.s.c. multimap such that Lx ̸∈ F (x) for all x ∈ ∂U . Let
δ = 1

2distY

0, (L−F )(∂U)


. For ε ∈ (0, δ] let pε : F (U)→ Y be the Schauder projection of the compact set

F (U) into a finite-dimensional subspace Z of Y such that ∥pεy− y∥ < ε for all y ∈ F (U). Denote by W ′ the
finite-dimensional subspace of ImL such that Z ⊂W =W ′ ⊕ Im(QL). Set T = L−1(W ), UT = U ∩ T . It is
clear that L|T : T →W is Fredholm operator of index q and

dimT = dimW + q.

W.l.o.g. assume that dimW = n ≥ q + 2. Then the coincidence index Ind(L,F, U) is defined as

Definition 5.

Ind(L,F, U) := deg(L− pε ◦ fκ, UT ) ∈ πn(Sn+q) ∼= Πq,

where fκ is an κ-approximation of F on UT while κ ∈ (0, ε) is sufficiently small and Πq denotes qth stable
homotopy group of spheres (see, e.g. [27]).
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The given coincidence index has the following properties.

(i) (Existence) If Ind(L,F, U) ̸= 0 ∈ Πq, then there exists x ∈ U such that Lx ∈ F (x).
(ii) (Localization) If U ′ ⊂ U is open and

C := {x ∈ U : Lx ∈ F (x)} ⊂ U ′,

then Ind(L,F, U) = Ind(L,F, U ′).
(ii) (Additivity) If U1, U2 are open bounded disjoint subsets of X and U = U1 ∪ U2, then

Ind(L,F, U) = Ind(L,F, U1) + Ind(L,F, U2).

(iii) (Restriction) If F (U) belongs to a subspace Y ′ of Y , then

Ind(L,F, U) = Ind(L,F, UT ),

where UT = U ∩ T, T = L−1(Y ′).
(iii) (Homotopy) If there exists a compact u.s.c. multimap Φ : U × [0, 1] → Kv(Y ) such that Lx ̸∈ Φ(x, λ)

for all (x, λ) ∈ ∂U × [0, 1], then

Ind

L,Φ(·, 0), U


= Ind


L,Φ(·, 1), U


.

3. A multiparameter global bifurcation theorem

Consider a family of differential inclusions of the form
x′(t) ∈ F(t, x(t), µ) for a. e. t ∈ [0, T ],
x(0) = x(T ),

(3.1)

where F : [0, T ]× Rn × Rk → Kv(Rn) be such that

(F1) for every (z, µ) ∈ Rn × Rk multifunction F(·, z, µ) : [0, T ]→ Kv(Rn) has a measurable selection;
(F2) for a.e. t ∈ [0, T ] multimap F(t, ·, ·) : Rn × Rk → Kv(Rn) is u.s.c.;
(F3) for every bounded subset Ω ⊂ Rn × Rk there exists a positive function γΩ ∈ L2[0, T ] such that

∥F(t, z, µ)∥ := max{|y| : y ∈ F(t, z, µ)} ≤ γΩ (t),

for all (z, µ) ∈ Ω and a.e. t ∈ [0, T ];
(F4) 0 ∈ F(t, 0, µ) for all µ ∈ Rk and a.e. t ∈ [0, T ].

From conditions (F1)–(F3) it follows that the superposition multioperator

PF : C × Rk → Cv(L2),
PF (x, µ) =


f ∈ L2 : f(t) ∈ F(t, x(t), µ) for a.e. t ∈ [0, T ]


,

is defined and closed (see, e.g. [5,6,20,28]).
Define the map L : W1,2

T → L2, Lx = x′. It is clear that L is a linear Fredholm operator of index zero and

Ker L ∼= Rn ∼= Coker L.
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The projection

ΠL : L2 → Rn,

is defined as

ΠL(f) = 1
T

 T
0
f(s) ds

and the homeomorphism ΛL : Rn → Rn is an identity operator.
Problem (3.1) can be substituted by the following problem

Lx ∈ PF (x, µ),

or equivalently,

x ∈ G(x, µ), (3.2)

where

G : C × Rk → Kv(C),
G(x, µ) = PLx+ (ΠL +KL) ◦ PF (x, µ).

Definition 6. By a solution to problem (3.1) we mean a pair (x, µ) ∈ C × Rk that satisfies (3.2).

It is clear that problem (3.1) has the trivial solution (0, µ) for all µ ∈ Rk. Denote by S the set of all nontrivial
solutions of (3.1).

Definition 7. A point (0, µ0) ∈ C × Rk is said to be a bifurcation point of problem (3.1) if for every open
bounded subset U ⊂ C ×Rk containing (0, µ0), there exists a solution (x, µ) ∈ U to problem (3.1) such that
x ̸= 0.

Definition 8. A family of continuously differentiable functions Vµ : Rn → R, µ ∈ Rk, is said to be a family of
local integral guiding functions for (3.1) at (0, 0), if there exists ε0 > 0 such that for each ε ∈ (0, ε0) there is a
sufficiently small number δε > 0 (which continuously depends on ε) such that for every x ∈ C, 0 < ∥x∥C ≤ δε,
the following relation holds  T

0


∇Vµ(x(s)), f(s)


ds > 0

for all µ ∈ Sk−1(0, ε) and f ∈ PF (x, µ), where ∇Vµ denotes the gradient of Vµ.

Lemma 4. If Vµ is a family of local integral guiding functions for (3.1) at (0, 0), then for every ε ∈ (0, ε0):

(a) inclusion (3.1) has only trivial solutions (0, µ) on BC(0, δε)× Sk−1(0, ε);
(b) equation ∇Vµ(w) = 0 has only trivial solutions on Bn(0, δε) for all µ ∈ Sk−1(0, ε).

Proof. (a) Assume that (x, µ) ∈ BC(0, δε) × Rk, |µ| = ε, is a nontrivial solution to (3.1). Therefore, there
exists f ∈ PF (x, µ) such that x′(t) = f(t) for a.e. t ∈ [0, T ]. Since |µ| = ε and 0 < ∥x∥C ≤ δε we have

 T
0


∇Vµ(x(t)), f(t)


dt > 0.
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On the other hand,

 T
0


∇Vµ(x(t)), f(t)


dt =

 T
0


∇Vµ(x(t)), x′(t)


dt = Vµ(x(T ))− Vµ(x(0)) = 0,

giving a contradiction.
(b) Assume that w ∈ Bn(0, δε) is a nontrivial solution to equation ∇Vµ(w) = 0 for some µ ∈ Sk−1(0, ε). For

any f ∈ PF (w, µ), since |µ| = ε and 0 < ∥w∥C = |w| ≤ δε we have

 T
0


∇Vµ(w), f(t)


dt > 0.

Therefore ∇Vµ(w) ̸= 0, that is a contradiction. �

For each ε ∈ (0, ε0), set Oε = Bn+k

0,

ε2 + δ2ε


and define the map

Vε : Oε → Rn+1,Vε(w, µ) = {−∇Vµ(w)} × {ε2 − |µ|2}.

From Lemma 4 it follows that Vε has no zeros on the sphere ∂Oε. Hence, the topological degree

deg(Vε, Oε) = ωVε(1) ∈ πn+1(Sn+k) = πn+k(Sn+1)

is well-defined.
Let us show that this degree does not depend on the choice of ε ∈ (0, ε0). In fact, let ε1, ε2, 0 < ε1 < ε2 <

ε0, be arbitrary numbers. For each λ ∈ [0, 1], set ελ+1 = λε2 + (1− λ)ε1,

Oελ+1 = Bn+k


0,

ε2λ+1 + δ2ελ+1


,

where δελ+1 is the constant from Definition 8, and consider the map

V ♯λ : Oελ+1 → Rn+1,

V ♯λ (w, µ) = {−∇Vµ(w)} × {ε2λ+1 − |µ|2}.

Assume that there exist λ∗ ∈ [0, 1] and (w∗, µ∗) ∈ ∂Oελ∗+1 such that

V ♯λ∗(w∗, µ∗) = 0,

or equivalently, 
∇Vµ∗(w∗) = 0,
|µ∗| = ελ∗+1.

From (w∗, µ∗) ∈ ∂Oελ∗+1 it follows that |w∗| = δελ∗+1 . That contradicts to Lemma 4(b). Hence, the
topological degree deg(Vε, Oε) is the same for all ε ∈ (0, ε0). This element is called the index of the family
of local integral guiding functions Vµ and is denoted by ind Vµ.

Theorem 1. Let conditions (F1)–(F4) hold. In addition, assume that there exists a family of local integral
guiding functions Vµ for (3.1) at (0, 0) such that ind Vµ ̸= 0. Then there is a connected subset R ⊂ S such
that (0, 0) ∈ R and either R is unbounded or R ∋ (0, µ∗) for some µ∗ ̸= 0.
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Proof. Let us represent the space L2 as

L2 = L0 ⊕ L1,

where L0 = Coker L and L1 = ImL. The decomposition of an element f ∈ L2 is denoted by

f = f0 + f1, f0 ∈ L0, f1 ∈ L1.

Define the map

ℓ : C × Rk → C × R, ℓ(x, µ) = (x, 0).

For r, ε > 0 set

Br,ε =


(x, µ) ∈ C × Rk : ∥x∥2C + |µ|2 ≤ r2 + ε2

,

and consider the multimap

Gr : Br,ε → Kv(C × R),
Gr(x, µ) = {G(x, µ)} × {r2 − ∥x∥2C}.

It is obvious that ℓ is a linear Fredholm map of index k − 1.

Step 1. We will show that Gr is a compact u.s.c. multimap. Indeed, since the superposition multioperator
PF is closed and the operator ΠL +KL is linear and continuous, the multimap (ΠL +KL) ◦ PF is closed
(see, e.g. Theorem 1.5.30 [6]). Now, by virtue of (F3) the set PF (Br,ε) is bounded in L2. Therefore, the
set (ΠL +KL) ◦ PF (Br,ε) is bounded in W1,2

T . From the compactness of the embedding W1,2 ↩→ C and the
fact that the map PL has its range in a finite-dimensional space it follows that the set G(Br,ε) is relatively
compact in C. Compact and closed multimap is u.s.c. So, the restriction G|Br,ε , and hence Gr, is a compact
u.s.c. multimap.

Step 2. Choosing arbitrarily ε ∈ (0, ε0) and sufficiently small r ∈ (0, δε), where ε0 and δε are the constants
from Definition 8, we will show that ℓ(x, µ) ̸∈ Gr(x, µ) for all (x, µ) ∈ ∂Br,ε.

Indeed, assume to the contrary that there is (x, µ) ∈ ∂Br,ε such that ℓ(x, µ) ∈ Gr(x, µ). Then,

x ∈ G(x, µ), (3.3)

and

∥x∥C = r. (3.4)

From (3.3) it follows that there is f ∈ PF (x, µ) such that x′(t) = f(t) for a.e. t ∈ [0, T ].

Applying (3.4), we obtain |µ| = ε. Moreover, from ∥x∥C = r < δε we have T
0


∇Vµ(x(s)), f(s)


ds > 0

for all µ ∈ Sk−1(0, ε).

On the other hand,  T
0


∇Vµ(x(s)), f(s)


ds =

 T
0


∇Vµ(x(s)), x′(s)


ds = 0,

giving a contradiction. Therefore, the coincidence index Ind(ℓ,Gr, Br,ε) is well-defined for each ε ∈ (0, ε0)
and r ∈ (0, δε).
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Step 3. Fix ε ∈ (0, ε0) and r ∈ (0, δε). Let us evaluate Ind(ℓ,Gr, Br,ε). Toward this goal, consider the
multimap Σ : Br,ε × [0, 1]→ Kv(C × R),

Σ (x, µ, λ) =

PLx+ (ΠL +KL) ◦ α


PF (x, µ), λ


×

τ

,

where

τ = λ(r2 − ∥x∥2C) + (1− λ)(|µ|2 − ε2),

and α : L2 × [0, 1]→ L2,

α(f, λ) = f0 + λf1, f0 ∈ L0, f1 ∈ L1, f = f0 + f1.

Following Step 1 we can easily prove that Σ is a compact u.s.c. multimap.

Assume (x∗, µ∗, λ∗) ∈ ∂Br,ε × [0, 1] is such that ℓ(x∗, µ∗) ∈ Σ (x∗, µ∗, λ∗). Then

λ∗(r2 − ∥x∗∥2C) + (1− λ∗)(|µ∗|2 − ε2) = 0, (3.5)

and there is a function f∗ ∈ PF (x∗, µ∗) such that

x∗ = PLx∗ + (ΠL +KL) ◦ α(f∗, λ∗)

or equivalently, 
(x∗)′ = λ∗f∗1
0 = f∗0 ,

where f∗0 + f∗1 = f∗, f∗0 ∈ L0 and f∗1 ∈ L1.

From (x∗, µ∗) ∈ ∂Br,ε it follows that

r2 − ∥x∗∥2C = |µ∗|2 − ε2.

Hence, from (3.5) we obtain

∥x∗∥C = r and |µ∗| = ε.

From the choice of r it follows that T
0


∇Vµ∗(x∗(s)), f(s)


ds > 0 for all f ∈ PF (x∗, µ∗).

If λ∗ ̸= 0: then  T
0


∇Vµ∗(x∗(s)), f∗(s)


ds =

 T
0


∇Vµ∗(x∗(s)),

1
λ∗
x∗′(s)


ds

= 1
λ∗


Vµ∗

x∗(T )


− Vµ∗


x∗(0)


= 0,

giving a contradiction.

If λ∗ = 0 then (x∗)′ = 0. Therefore x∗ ≡ a for some a ∈ Rn, |a| = r. According to Definition 8, for every
f ∈ PF (a, µ∗) we have T

0


∇Vµ∗(a), f(s)


ds =


∇Vµ∗(a),

 T
0
f(s) ds


= T


∇Vµ∗(a),ΠLf


> 0. (3.6)

Consequently, ΠLf ̸= 0 for all f ∈ PF (a, µ∗), in particular, ΠLf∗ ̸= 0. But ΠLf∗ = ΠLf∗0 = 0. That is a
contradiction.



94 N.V. Loi / Nonlinear Analysis 122 (2015) 83–99

Thus multimap Σ is a homotopy on ∂Br,ε connecting the multimaps Σ (x, µ, 1) = Gr(x, µ) and

Σ (x, µ, 0) =

PLx+ ΠLPF (x, µ)


×

|µ|2 − ε2


.

By virtue of the homotopy invariance of the coincidence index we obtain

Ind(ℓ,Gr, Br,ε) = Ind(ℓ,Σ (·, ·, 0), Br,ε).

The multimap PL+ΠLPF takes values in Rn, so applying the restriction property of the coincidence degree
we have

Ind(ℓ,Σ (·, ·, 0), Br,ε) = Ind(ℓ,Σ (·, ·, 0), Ur,ε),

where Ur,ε = Br,ε ∩ Rn+k.

In the space Rn+1 the vector field ℓ− Σ (·, ·, 0) has the form

ℓ(y, µ)− Σ (y, µ, 0) =

−ΠLPF (y, µ)


×

ε2 − |µ|2


, ∀(y, µ) ∈ Ur,ε.

Consider now the multimap: Γ : Ur,ε × [0, 1]→ Kv(Rn+1) defined as

Γ (y, µ, λ) =

−λΠLPF (y, µ) + (λ− 1)∇Vµ(y)


×

ε2 − |µ|2


.

It is clear that Γ is a compact u.s.c. multimap. Assume that there exists (y, µ, λ) ∈ ∂Ur,ε × [0, 1] such that
0 ∈ Γ (y, µ, λ). Then we obtain 

|µ| = ε
(λ− 1)∇Vµ(y) ∈ λΠLPF (y, µ),

and by virtue of (3.6) we get the contradiction. So, Γ is a homotopy connecting ℓ−Σ (·, ·, 0) and Vε, therefore,
by assumption

Ind

ℓ,Σ (·, ·, 0), Ur,ε


= deg

Vε, Ur,ε = deg
Vε, Oε = ind Vµ ̸= 0. (3.7)

Step 4. Let O ⊂ C × Rk be an open set defined as

O =

C × Rk


\

{0} × (Rk \Bk(0, ε0))


.

From Ind (ℓ,Gr, Br,ε) ̸= 0 for every ε ∈ (0, ε0) and for all r ∈ (0, δε) it follows that there exists (x, µ) ∈ Br,ε
such that ℓ(x, µ) ∈ Gr(x, µ), or equivalently 

x ∈ G(x, µ),
∥x∥C = r,

i.e., (x, µ) ∈ Br,ε is a nontrivial solution to problem (3.2). Therefore, (0, 0) is a bifurcation point of problem
(3.2), and hence, it is a bifurcation point of problem (3.1). Denote by R ⊂ S ∪ {(0, 0)} ⊂ O the connected
component of (0, 0). Let us demonstrate that R is a non-compact component. Assume to the contrary that
R is compact. Then there exists an open bounded subset U ⊂ O such that

U ⊂ O, R ⊂ U and ∂U ∩ S = ∅.

Hence, for each r > 0

ℓ(x, µ) ̸∈ Gr(x, µ), ∀(x, µ) ∈ ∂U.

Further, for any 0 < r < R, the compact u.s.c. multimaps Gr and GR on U can be joined by the homotopy
Gλr+(1−λ)R. For sufficiently large R,

ℓ(x, µ) ̸∈ GR(x, µ), ∀(x, µ) ∈ U,

so, Ind (ℓ,GR, U) = 0. Therefore, Ind (ℓ,Gr, U) = 0 for all r > 0.
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Now, let Λ = {µ ∈ Rk : (0, µ) ∈ U}. From U ⊂ O it follows that

Λ ⊂ Bk(0, ε0). (3.8)

From Lemma 4(a) and the continuous dependence of the number δε on ε it follows that we can choose
0 < ε < ε0 and 0 < r < δε such that Br,ε ⊂ U and inclusion

x ∈ G(x, µ)

has only trivial solutions in the ball BC(0, r) for all µ ∈ Rk : ε ≤ |µ| < ε0.

From (3.8) and the choice of r, ε (we can take r, ε sufficiently small) we have

Coin(ℓ,Gr, U) := {(x, µ) ∈ U : ℓ(x, µ) ∈ Gr(x, µ)} ⊂ Br,ε.

So, we obtain

0 = Ind (ℓ,Gr, U) = Ind (ℓ,Gr, Br,ε) ̸= 0,

that is the contradiction. Thus, R is a non-compact component, i.e., either R is unbounded or R ∩
∂O ≠ ∅. �

4. Main result

In this section we will use the symbols W1,2
T , C defined in Section 2.1 with a remark that n = 2. Now we

study the global bifurcation of solutions of problem (1.1). Assume that

(A1) for each (t, z, µ) ∈ [0, T ]× R2 × R2 the set

f(t, z,Ω , µ) := {f(t, z, y, µ) : y ∈ Ω}

is convex for every convex subset Ω ⊂ Rm;
(A2) there exist positive numbers αf , αG, c1, c2 such that αf < c and

|f(t, z, y, µ)| ≤ αf |z| (|y|+ |µ|),
|G(t, z, µ)| ≤ αG |z|c1(1 + |µ|c2),

for (t, z, y, µ) ∈ [0, T ]× R2 × Rm × R2, where c > 0 is the given number in (1.2);
(A3) F is monotone on K and there exists a > 0 such that


w,F (w)


≥ a |w|2 for all w ∈ K.

Lemma 5 (Cf. Proposition 6.2 [33]). Let condition (A3) holds. Then

(a) for every r ∈ Rm the solution set

SOL(K, r + F ) =

w ∈ K :

 w − w, r + F (w)

≥ 0, ∀ w ∈ K

is nonempty convex and closed;
(b) |w| ≤ 1

a |r| for all w ∈ SOL(K, r + F ), r ∈ Rm, where a is the constant from condition (A3).
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Proof. (a) It is clear that for every r ∈ Rm the map r + F is monotone on K. From (A3) it follows that
w, r + F (w)


|w|

→ ∞ as ∥w∥ → ∞ and w ∈ K.

Hence, by virtue of Lemma 3 the set SOL(K, r+F ) is nonempty. Since F is continuous the set SOL(K, r+F )
is closed. Let us show that it is convex, i.e., we need to show that for y, z ∈ SOL(K, r + F ) and λ ∈ [0, 1]

u− λy − (1− λ)z, r + F (λy + (1− λ)z)

≥ 0 for all u ∈ K,

or equivalently (see Lemma 1):
u− λy − (1− λ)z, r + F (u)


≥ 0 for all u ∈ K.

In fact, since y, z ∈ SOL(K, r + F ) we have
u− y, r + F (y)


≥ 0 for all u ∈ K,

and 
u− z, r + F (z)


≥ 0 for all u ∈ K,

or equivalently (see Lemma 1): 
u− y, r + F (u)


≥ 0 for all u ∈ K,

and 
u− z, r + F (u)


≥ 0 for all u ∈ K.

Consequently,
u− λy − (1− λ)z, r + F (u)


= λ


u− y, r + F (u)


+ (1− λ)


u− z, r + F (u)


≥ 0

for all u ∈ K.

(b) Now, for w ∈ SOL(K, r + F ), by virtue of Lemma 2 we have

w, r + F (w)


= 0. Therefore,w, r =

w,F (w)
.

Applying (A3) we obtain

a|w|2 ≤
w, r ≤ |w| |r|.

So, |w| ≤ 1
a |r|. �

Define the multimap U : [0, T ]× R2 × R2 → Cv(K),

U(t, z, µ) = SOL(K,G(t, z, µ) + F ),

and Φ : [0, T ]× R2 × R2 → Kv(R2)

Φ(t, z, µ) =

A(µ)z + f(t, z, y, µ) : y ∈ U(t, z, µ)


.

Lemma 6. Let conditions (A1)–(A3) hold. Then Φ satisfies conditions (F1)–(F4) with a remark that
n = k = 2.

Proof. From (A2) and Lemma 5(b) it follows that

∥U(t, z, µ)∥ ≤ 1
a
|G(t, z, µ)| ≤ αG

a
|z|c1(1 + |µ|c2) (4.1)
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for (t, z, µ) ∈ [0, T ] × R2 × R2. Therefore, the restriction U|Ω of multimap U on any bounded subset
Ω ⊂ [0, T ] × R2 × R2 is compact. By virtue of Lemma 5(a) U is closed multimap, and hence, it is u.s.c.
Since the maps A and f are continuous the multimap Φ is u.s.c., too. So, Φ satisfies conditions (F1)–(F2).
Conditions (F3)–(F4) follows immediately from (A2) and (4.1). �

Now, by using Filippov’s Implicit Function Lemma (see, e.g. Theorem 1.5.15 [6] or Theorem 1.3.3 [28])
we can substitute problem (1.1) by the following equivalent problem

x′(t) ∈ Φ(t, x(t), µ) for a.e. t ∈ [0, T ],
x(0) = x(T ).

(4.2)

Definition 9. By a solution to problem (1.1) we mean a triplet (x, u, µ) consisting of a function x ∈ W1,2
T ,

an integrable function u : [0, T ]→ K and a vector µ ∈ R2 that satisfies (1.1), or equivalently, by a solution
to problem (1.1) we mean a pair (x, µ) ∈ W1,2

T × R2 that satisfies (4.2).

From (A2) it follows that (0, µ) is the trivial solution to (1.1) for all µ ∈ R2. Let us denote by S the set of
all nontrivial solutions to (1.1).

Theorem 2. Let conditions (A1)–(A3) hold. Then (0, 0) is a unique bifurcation point for solutions of
(1.1) and, moreover, there is an unbounded subset R ⊂ S such that (0, 0) ∈ R.

Proof. Firstly, let us show that the family of functions Vµ : R2 → R,

Vµ(w) = c2

µ1w

2
1 + 2µ2w1w2 − µ1w2

2

, w = (w1, w2), µ = (µ1, µ2),

is a family of local integral guiding functions for (4.2) at (0, 0). In fact, let ε > 0 and µ ∈ S1(0, ε) be
arbitrary. For x ∈ C take any g ∈ PΦ(x, µ) (PΦ is defined similarly PF ). Then there is an integrable function
u : [0, T ]→ K such that

g(t) = A(µ)x(t) + f

t, x(t), u(t), µ


for a.e. t ∈ [0, T ].

By virtue of (A2) and (4.1) we have T
0


∇Vµ(x(t)), g(t)


dt =

 T
0


A(µ)x(t), A(µ)x(t) + f


t, x(t), u(t), µ


dt

≥
 T

0
|A(µ)x(t)|2dt−

 T
0
|A(µ)x(t)| |f(t, x(t), u(t), µ)|dt

≥ c2 |µ|2 ∥x∥22 − c|µ|
 T

0
|x(t)|αf |x(t)|(|u(t)|+ |µ|)dt

≥ c2 |µ|2 ∥x∥22 − cαf |µ|2∥x∥22 − cαf |µ|
 T

0
|x(t)|2 αG

a
|x(t)|c1(1 + |µ|c2)dt

≥ c(c− αf ) |µ|2 ∥x∥22 −
c

a
αfαG|µ|(1 + |µ|c2)∥x∥c1C ∥x∥

2
2.

Therefore,  T
0


∇Vµ(x(t)), g(t)


dt > 0

provided

0 < ∥x∥C < c1


a(c− αf )|µ|
αfαG(1 + |µ|c2) = c1


a(c− αf )ε
αfαG(1 + εc2) .
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Put

δε = 1
2
c1


a(c− αf )ε
αfαG(1 + εc2) .

Then δε continuously depends on ε and T
0


∇Vµ(x(t)), g(t)


dt > 0 provided 0 < ∥x∥C ≤ δε. (4.3)

Thus, Vµ is a family of local integral guiding functions for problem (4.2) at (0, 0).

For each ε > 0, choose δε as above. Set Oε = B40,ε2 + δ2ε


and consider the mapVε : Oε → R3,Vε(w, µ) =

−∇Vµ(w)


×

ε2 − |µ|2


=

−(2µ1w1 + 2µ2w2),−(2µ2w1 − 2µ1w2), ε2 − |µ|2


.

Let us show that ind Vµ ̸= 0. Toward this goal, consider the following continuous map

H : Oε × [0, 1]→ R3,

H(w, µ, λ) = {−∇Vµ(w)} × {λ|w|2 + (1− λ)ε2 − |µ|2}.

Assume that there exists (w, µ, λ) ∈ ∂Oε × [0, 1] such that H(w, µ, λ) = 0, then we have
−∇Vµ(w) = 0,
λ|w|2 − |µ|2 = (λ− 1)ε2,
|w|2 + |µ|2 = ε2 + δ2ε .

From the second and third equations of the above system it follows that

|w|2 = λε
2 + δ2ε

1 + λ and |µ|2 = ε
2 + λδ2ε
1 + λ .

Therefore, w and µ are non-zero elements in R2. That contradicts to the first equation of the system. Thus,
H is a homotopy connecting the maps Vε = H(·, ·, 0) and H(·, ·, 1). By the homotopy invariance property of
the topological degree we obtain

deg(Vε, Oε) = deg

H(·, ·, 1), Oε


.

On the other hand, the map H(·, ·, 1) : R4 → R3 vanishes only at (0, 0) and the restriction h = −H(·, ·, 1)|S3
:

S3 → S2 is the Hopf fibration (see, e.g. [27]). Hence,

deg

H(·, ·, 1), Oε


= deg


H(·, ·, 1), B4


= deg(−h,B4) = Σ [−h] ̸= 0,

where Σ is defined in Example 1.

Therefore, (0, 0) is a bifurcation point for solutions of (4.2). Moreover, from the fact that relation (4.3)
holds true for all ε > 0 it follows that (0, 0) is the unique bifurcation point for solutions of (4.2). Now, the
application of Theorem 1 ends the proof. �
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