
RESEARCH PAPER

DECAY SOLUTIONS FOR A CLASS OF FRACTIONAL

DIFFERENTIAL VARIATIONAL INEQUALITIES

Tran Dinh Ke 1, Nguyen Van Loi 2, Valeri Obukhovskii 3

Abstract

Our aim is to study a new class of differential variational inequalities in-
volving fractional derivatives. Using the fixed point approach, the existence
of decay solutions to the mentioned problem is proved.
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1. Introduction

We consider the differential variational inequality (DVI) of the following
form

CDα
0 x(t) = Ax(t) +B(t, x(t), xt)u(t), t ∈ J := [0, T ], (1.1)

⟨v − u(t), F (t, x(t)) +G(u(t))⟩ ≥ 0,∀v ∈ K, for a.e. t ∈ J, (1.2)

x(s) + h(x)(s) = φ(s), s ∈ [−τ, 0], (1.3)

where x(t) ∈ Rn, u(t) ∈ K with K being a closed convex subset in Rm.
Here CDα

0 , α ∈ (0, 1), denotes the Caputo derivative of fractional order α,
xt stands for the history of state function up to the time t, i.e. xt(θ) =
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532 T.D. Ke, N. Van Loi, V. Obukhovskii

x(t+ θ), θ ∈ [−τ, 0]; ⟨·, ·⟩ is the inner product on Rm, A,B, F,G and h are
given maps which will be specified in Section 3.

The notion of differential variational inequality was firstly used by
Aubin and Cellina [1] in 1984. In their book the authors considered the
problem: 

∀t ≥ 0, x(t) ∈ K,

supy∈K
⟨
x′(t)− f(x(t)), x(t)− y

⟩
= 0,

x(0) = x0,

(1.4)

where K is a convex closed subset. The problem (1.4) was replaced with
the differential inclusion of the form:{

x′(t) ∈ F (t, x(t)),

x(0) = x0.

Then the solvability of (1.4) can be studied by the topological tools of
multivalued analysis. After this work, the theory of DVIs was considered
and expanded in the work of Avgerinous and Papageorgiou [4] in 1997.
Moreover, Avgerinous and Papageorgiou studied the periodic solutions to
the DVI of the form:{

−x′(t) ∈ NK(t)

(
x(t)

)
+ F

(
t, x(t)

)
for a.e. t ∈ [0, b]

x(0) = x(b),
(1.5)

where NK(t)

(
x(t)

)
denotes the normal cone of the convex closed set K(t)

at the point x(t).
However, DVIs were first systematically studied by Pang and Stewart

[25]. DVIs are useful for representing models involving both dynamics
and constraints in the form of inequalities which arise in many applied
problems, for example, mechanical impact problems, electrical circuits with
ideal diodes, Coulomb friction problems for contacting bodies, economical
dynamics and related problems such as dynamic traffic networks. Some
existence results for DVIs can be found in [14, 15, 22] (see also the references
therein).

In the last few years, the theory of fractional differential equations
(FrDEs) has attracted much attention. The FrDEs were proved to be an
effective tool to model realistic problems in fluid flow, rheology, electrical
networks, viscoelasticity, electrochemistry, etc. For complete references, we
send to some significant works, e.g., the monographs of Kilbas et al. [20],
Kiryakova [21], Miller and Ross [23] and Podlubny [26]. As for nonlinear
FrDEs, there have been many studies aimed to investigate the problems of
solvability, controllability and optimal control. Some recent results in these
directions can be found in [3, 6, 7, 8, 13, 19, 24].
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As a matter of fact, system (1.1)-(1.3) can be seen as a control problem
subject to constraints. Though many contributions for FrDEs have been
carried out, up to our knowledge, no attempt has been made to study frac-
tional DVIs appeared as (1.1)-(1.3). In the present paper, by combining
the topological methods and the fractional calculus we study the existence
of solutions to problem (1.1)-(1.3) and the existence of decay solutions to
this problem when J is an infinite interval. Regarding the last objective,
we find a suitable space of solutions and define a regular measure of non-
compactness on this space. This construction enables us to apply the fixed
point theory for condensing multivalued maps to obtain a compact set of
decay solutions x(·) with polynomial decay rate, that is tα∥x(t)∥ = O(1) as
t → ∞.

The paper is organized in the following way. In Section 2 we recall some
notions and facts from the multivalued analysis and fractional calculus.
Section 3 deals with the existence of solutions to (1.1)-(1.3) on compact
interval and in Section 4 the existence of decay solutions is proved.

2. Preliminaries

2.1. Measure of noncompactness and multivalued maps. Let E be
a Banach space. Denote

P(E) = {B ⊂ E : B ̸= ∅},
B(E) = {B ∈ P(E) : B is bounded}.

We will use the following definition of the measure of noncompactness (see,
e.g., [2, 18]).

Definition 2.1. A function β : B(E) → R+ is called a measure of
noncompactness (MNC) in E if

β(co Ω) = β(Ω) for every Ω ∈ B(E),

where co Ω is the closure of the convex hull of Ω. An MNC β is called

i) monotone if Ω0,Ω1 ∈ B(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);
ii) nonsingular if β({a} ∪ Ω) = β(Ω) for any a ∈ E,Ω ∈ B(E);
iii) invariant with respect to union with compact set if β(K∪Ω) = β(Ω)

for every relatively compact set K ⊂ E and Ω ∈ B(E);
iv) algebraically semi-additive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any

Ω0,Ω1 ∈ B(E);
v) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

Auth
or'

s C
op

y



534 T.D. Ke, N. Van Loi, V. Obukhovskii

An important example of MNC is the Hausdorff MNC χ(·), which is
defined as

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.
For a fixed θ ∈ R and T > θ, it is known that the Hausdorff MNC on the
space C([θ, T ];Rn) is given by

χT (D) =
1

2
lim
δ→0

sup
x∈D

max
t,s∈[θ,T ],|t−s|<δ

∥x(t)− x(s)∥, (2.1)

where ∥ · ∥ is the Euclidean norm in Rn (see [2]). This quantity is called
the modulus of equicontinuity of D ⊂ C([θ, T ];Rn).

Consider the space BC(θ,∞;Rn) of bounded continuous functions on
[θ,∞) taking values in Rn. Denote by πT the restriction operator on this
space, that is πT (x) is the restriction of x on [θ, T ]. Then the function χ∞
defined by

χ∞(D) = sup
T>θ

χT (πT (D)), D ⊂ BC(θ,∞;Rn), (2.2)

is an MNC. One can check that this MNC satisfies all properties given in
Definition 2.1, with the exception of regularity. Indeed, we will testify this
claim by choosing the sequence {fk} ⊂ BC(0,∞;R) as follows

fk(t) =


0, t ̸∈ [k, k + 1],

2t− 2k, t ∈ [k, k + 1
2 ],

−2t+ 2k + 2, t ∈ [k + 1
2 , k + 1].

Then it is obvious that {πT (fk)} is compact (converging to 0 in C([0, T ];R))
for any T > 0. However, one sees that

sup
t≥0

|fk(t)− fl(t)| = 1 for k ̸= l,

and then {fk} is not a Cauchy sequence in BC(0,∞;R). This fact tells us
that χT (πT ({fk}))) = 0 for any T > 0 and then χ∞({fk}) = 0, but {fk} is
non-compact.

We also make use of the following MNCs on BC(θ,∞;Rn) (see [5]):

dT (D) = sup
x∈D

sup
t≥T

∥x(t)∥, (2.3)

d∞(D) = lim
T→∞

dT (D). (2.4)

Let

χ∗(D) = χ∞(D) + d∞(D). (2.5)

Then χ∗ is an MNC on BC(θ,∞;Rn). We now prove its regularity.

Lemma 2.1. The MNC χ∗ defined by (2.5) is regular.

Auth
or'

s C
op

y



DECAY SOLUTIONS FOR A CLASS OF FRACTIONAL . . . 535

P r o o f. Let D ⊂ BC(θ,∞;Rn) be a bounded set such that χ∗(D) =
0. We show that D is relatively compact. Let PBC(θ,∞;Rn) be the space
of piecewise continuous and bounded functions on R+, taking values in Rn.
This is a Banach space with the norm

∥x∥PBC = sup
t≥θ

∥x(t)∥,

and contains BC(θ,∞;Rn) as a closed subspace.
For ϵ > 0, since d∞(D) = 0 one can choose T > 0 such that supt≥T ∥x(t)∥ <

ϵ

2
, ∀x ∈ D. This means that

∥x− πT (x)∥PBC <
ϵ

2
, ∀x ∈ D,

here πT (x) agrees with a function in PBC(θ,∞;Rn) in the following man-
ner

πT (x) =

{
x(t), t ∈ [θ, T ],

0, t > T.

Now since πT (D) is a compact set in C([θ, T ];Rn), we can write

πT (D) ⊂
N∪
i=1

BT (xi,
ϵ

2
) (2.6)

where xi ∈ C([θ, T ];Rn), i = 1, ..., N , the notation BT (x, r) stands for the
ball in C([θ, T ];Rn) centered at x with radius r. Put

x̂i(t) =

{
xi(t), t ∈ [θ, T ],

0, t > T,

then {x̂i}Ni=1 belong to PBC(θ,∞;Rn). We now assert that

D ⊂
N∪
i=1

B∞(x̂i, ϵ),

here B∞(x, r) is the ball in PBC(θ,∞;Rn) with center x and radius r.
Indeed, if x ∈ D then by (2.6) there is a number k ∈ {1, ..., N} such that

∥πT (x)− xk∥C <
ϵ

2
,

here ∥ · ∥C is the norm in C([θ, T ];Rn). This implies

∥πT (x)− x̂k∥PBC <
ϵ

2
.

Then

∥x− x̂k∥PBC ≤ ∥x− πT (x)∥PBC + ∥πT (x)− x̂k∥PBC

≤ ϵ

2
+

ϵ

2
= ϵ.

Thus x ∈ B∞(x̂k, ϵ). We have D ⊂
N∪
i=1

B∞(x̂i, ϵ), and hence D is rela-

tively compact in PBC(θ,∞;Rn). Since BC(θ,∞;Rn) and PBC(θ,∞;Rn)
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536 T.D. Ke, N. Van Loi, V. Obukhovskii

have the same norm, we conclude that D is a relatively compact set in
BC(θ,∞;Rn). The proof is complete. 2

In the sequel, we make use of some notions and facts of multivalued
analysis. Let Y be a metric space.

Definition 2.2. A multivalued map (multimap) F : Y → P(E) is
said to be:

i) upper semicontinuous (u.s.c) if F−1(V ) = {y ∈ Y : F(y) ∩ V ̸= ∅}
is a closed subset of Y for every closed set V ⊂ E;

ii) weakly upper semicontinuous (weakly u.s.c) if F−1(V ) is a closed
subset of Y for all weakly closed sets V ⊂ E;

iii) closed if its graph ΓF = {(y, z) : y ∈ Y, z ∈ F(y)} is a closed subset
of Y × E;

iv) compact if F(Y ) is relatively compact in E;
v) quasicompact if its restriction to any compact subset A ⊂ Y is

compact.

Lemma 2.2 ([18, Theorem 1.1.12]). Let G : Y → P(E) be a closed
quasicompact multimap with compact values. Then G is u.s.c.

Lemma 2.3 ([9, Proposition 2]). Let X be a Banach space and Ω be
a nonempty subset of another Banach space. Assume that G : Ω → P(X)
is a multimap with weakly compact, convex values. Then G is weakly u.s.c
iff {xn} ⊂ Ω with xn → x0 ∈ Ω and yn ∈ G(xn) implies yn ⇀ y0 ∈ G(x0),
up to a subsequence.

Definition 2.3. A multimap F : Z ⊆ E → P(E) is said to be
condensing with respect to an MNC β (β-condensing) if for any bounded
set Ω ⊂ Z, the relation

β(Ω) ≤ β(F(Ω))

implies the relative compactness of Ω.

Let β be a monotone nonsingular MNC in E. The application of the
topological degree theory for condensing multimaps (see, e.g., [18]) yields
the following fixed point principle, which will be used to prove the existence
of solutions to (1.1)-(1.3).

Theorem 2.1. [18, Corollary 3.3.1] LetM be a bounded convex closed
subset of E and let F : M → P(M) be a u.s.c and β-condensing multimap
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DECAY SOLUTIONS FOR A CLASS OF FRACTIONAL . . . 537

with compact convex values. Then the fixed point set Fix(F) := {x =
F(x)} is a nonempty compact set.

2.2. Fractional calculus. Let L1(0, T ;Rn) be the space of integrable func-
tions on [0, T ], taking values in Rn.

Definition 2.4. The fractional integral of order α > 0 of a function
f ∈ L1(0, T ;Rn) is defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

where Γ is the Gamma function, provided the integral converges.

Definition 2.5. For a function f ∈ CN ([0, T ];Rn), the Caputo frac-
tional derivative of order α ∈ (N − 1, N) is defined by

CDα
0 f(t) =

1

Γ(N − α)

∫ t

0
(t− s)N−α−1f (N)(s)ds.

Let S(t) = etA, t ≥ 0, be the semigroup generated by A. Put

Sα(t) = Eα,1(t
αA), (2.7)

Pα(t) = Eα,α(t
αA), (2.8)

where Eα,β is the Mittag-Leffler function defined by

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
.

Then by [29] we have the representation for Sα and Pα as follows:

Sα(t)z =

∫ ∞

0
ϕα(θ)S(t

αθ)zdθ, (2.9)

Pα(t)z = α

∫ ∞

0
θϕα(θ)S(t

αθ)zdθ, z ∈ Rn, (2.10)

where ϕα is a probability density function defined on (0,∞), that is, ϕα(θ) ≥
0 and

∫∞
0 ϕα(θ)dθ = 1. Moreover, ϕα has the expression

ϕα(θ) =
1

π

∞∑
n=1

(−θ)n

(n− 1)!
Γ(nα) sin(nπα).

Proposition 2.1. If the C0-semigroup {S(t)}t≥0 generated by A is
exponentially stable, i.e., there are positive numbers a,M such that

∥etA∥ ≤ Me−at,
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538 T.D. Ke, N. Van Loi, V. Obukhovskii

then ∥Sα(t)∥, ∥Pα(t)∥ = O(t−α) as t → ∞.

P r o o f. By the fact that (see, e.g. [28])∫ ∞

0
ϕα(θ)e

−zθdθ = Eα,1(−z),∫ ∞

0
αθϕα(θ)e

−zθdθ = Eα,α(−z),

we have

∥Sα(t)∥ ≤
∫ ∞

0
ϕα(θ)∥S(θtα)∥dθ

≤ M

∫ ∞

0
ϕα(θ)e

−atαθdθ = MEα,1(−atα),

∥Pα(t)∥ ≤
∫ ∞

0
αθϕα(θ)∥S(θtα)∥dθ

≤ M

∫ ∞

0
αθϕα(θ)e

−atαθdθ = MEα,α(−atα).

On the other hand, we have the following asymptotic expansion for Eα,β

as z → ∞ (see, e.g., [16]):

Eα,β(z) =

{
1
αz

(1−β)/α exp z1/α + εα,β(z) if | arg z| ≤ 1
2πα,

εα,β(z) if | arg(−z)| ≤ (1− 1
2α)π,

where

εα,β(z) = −
N−1∑
n=1

z−n

Γ(β − αn)
+O(|z|−N ), as z → ∞.

Thus, in our case

∥Sα(t)∥ ≤ MEα,1(−atα) = Mεα,1(−atα),

∥Pα(t)∥ ≤ MEα,α(−atα) = Mεα,α(−atα).

Two last inequalities ensure that ∥Sα(t)∥,∥Pα(t)∥ = O(t−α) as t → ∞. The
proposition is proved. 2

Consider the linear Cauchy problem
CDα

0 x(t) = Ax(t) + f(t), t ∈ J,

x(0) = x0.

By using the Laplace transform for fractional derivative (see [20, Lemma
2.24]), we have

(λα −A)x̂(λ) = λα−1x0 + f̂(λ),
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DECAY SOLUTIONS FOR A CLASS OF FRACTIONAL . . . 539

where ŷ stands for the Laplace transform of y ∈ L1(0,∞;Rn). Then for
λ ∈ R+ such that λα ∈ ρ(A) (the resolvent set of A), we have

x̂(λ) = λα−1(λα −A)−1x0 + (λα −A)−1f̂(λ).

Taking the inverse Laplace transform of the last equation, one has the
following representation of x:

x(t) = Sα(t)x0 +

∫ t

0
(t− s)α−1Pα(t− s)f(s)ds, (2.11)

thanks to the fact that

Ŝα(λ) = λα−1(λα −A)−1,

̂(·)α−1Pα(λ) = (λα −A)−1.

3. Existence result on compact intervals

Denote

CT = C([0, T ];Rn),

Cτ = C([−τ, 0];Rn),

C = C([−τ, T ];Rn).

Let χT and χτ be the Hausdorff MNCs on C and Cτ , respectively. In the
formulation of problem (1.1)-(1.3), we assume that

(H1) A is a linear operator on Rn.
(H2) B : [0, T ]×Rn ×Cτ → Rn×m, F : [0, T ]×Rn → Rm, G : K → Rm,

and h : C → Cτ are continuous maps such that
(1) there exist ηB ∈ Lp(0, T ), p > 1

α , and a non-decreasing contin-
uous function ΨB such that

∥B(t, v, w)∥ ≤ ηB(t)ΨB(∥v∥+ ∥w∥Cτ )

for all v ∈ Rn, w ∈ Cτ ;
(2) there is a positive number ηF such that ∥F (t, v)∥ ≤ ηF for all

t ∈ [0, T ] and v ∈ Rn;
(3) G is monotone on K, that is

⟨u− v,G(u)−G(v)⟩ ≥ 0, ∀u, v ∈ K;

(4) there exists v0 ∈ K such that

lim
v∈K,∥v∥→∞

⟨v − v0, G(v)⟩
∥v∥2

> 0;

(5) there is a non-decreasing continuous function Ψh such that

∥h(x)∥Cτ ≤ Ψh(∥x∥C), ∀x ∈ C;
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540 T.D. Ke, N. Van Loi, V. Obukhovskii

(6) there exists ηh ≥ 0 such that

χτ (h(Ω)) ≤ ηhχT (Ω),

for all bounded sets Ω ⊂ C.

Remark 3.1. Let us give some comments on assumption (H2)(6). As
mentioned in [18], this condition is satisfied if h is a Lipschitz function.
Precisely, if

∥h(x1)− h(x2)∥Cτ ≤ ηh∥x1 − x2∥C ,
then (H2)(6) is true. On the other hand, in the non-delay case (τ = 0), we
can remove this assumption. Indeed, if τ = 0 then h(Ω) is a bounded set
in Rn thanks to (H2)(5) and so it is relatively compact. Then (H2)(6) is
fulfilled with ηh = 0.

Motivated by formula (2.11), we have the following definition.

Definition 3.1. By a mild solution to (1.1)-(1.3) on [−τ, T ], we mean
a function x ∈ C, for which there exists an integrable function u : J → K
such that

x(t) = Sα(t)[φ(0)− h(x)(0)] +

∫ t

0
(t− s)α−1Pα(t− s)B(s, x(s), xs)u(s)ds,

t ∈ J,

⟨v − u(t), F (t, x(t)) +G(u(t))⟩ ≥ 0, for a.e. t ∈ J, ∀v ∈ K,

x(s) + h(x)(s) = φ(s), s ∈ [−τ, 0].

Now for a given mapping Q : Rm → Rm, we denote

SOL(K,Q) = {v ∈ K : ⟨w − v,Q(v)⟩ ≥ 0, ∀w ∈ K}. (3.1)

Due to [25, Proposition 6.2], one has the following result.

Lemma 3.1 ([25]). Let (H2)(3)-(H2)(4) hold. Then for every z ∈
Rm, the solution set SOL(K, z + G(·)) is non-empty, convex and closed.
Moreover, there exists ηG > 0 such that

∥v∥ ≤ ηG(1 + ∥z∥), ∀v ∈ SOL(K, z +G(·)). (3.2)

In order to solve (1.1)-(1.3), we convert it to a differential inclusion.
Let

U(z) = SOL(K, z +G(·)), z ∈ Rm.
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DECAY SOLUTIONS FOR A CLASS OF FRACTIONAL . . . 541

Then it is easy to verify that U : Rm → P(Rm) has closed convex values.
In addition, U is a closed multimap. From (3.2) we see that U is locally
bounded, then it is u.s.c.

Now we define Φ : J × Rn × Cτ → P(Rn) as follows:

Φ(t, v, w) = {B(t, v, w)y : y ∈ U(F (t, v))}. (3.3)

Since U has closed convex values, so does Φ. Furthermore, thanks to the
continuity of B and F , the composition multimap Φ is u.s.c. For x ∈ C, we
denote

PΦ(x) = {f ∈ Lp(J ;Rn) : f(t) ∈ Φ(t, x(t), xt) for a.e. t ∈ J}.

It turns out that the solution of (1.1)-(1.3) is given by

x(t) = Sα(t)[φ(0)− h(x)(0)]

+

∫ t

0
(t− s)α−1Pα(t− s)f(s)ds, f ∈ PΦ(x), t ∈ J, (3.4)

x(t) + h(x)(t) = φ(t), t ∈ [−τ, 0]. (3.5)

Let W : Lp(J ;Rn) → CT be the operator defined as

W (f)(t) =

∫ t

0
(t− s)α−1Pα(t− s)f(s)ds. (3.6)

We are now in a position to define the solution multioperator Σ : C → P(C)
as follows: for given φ ∈ Cτ ,

Σ(x)(t) =

{
φ(t)− h(x)(t), t ∈ [−τ, 0],

{Sα(t)[φ(0)− h(x)(0)] +W (f)(t) : f ∈ PΦ(x)}, t ∈ J.

(3.7)
Then x ∈ C is a solution of (3.4)-(3.5) iff x is a fixed point of Σ. We will
apply Theorem 2.1 to show that Fix(Σ) ̸= ∅. At first, we have to prove
some necessary properties of the solution multioperator.

Using Lemma 2.3, we show that PΦ is weakly u.s.c.

Lemma 3.2. Under the assumptions (H2)(1)-(H2)(4), PΦ is well-
defined and weakly u.s.c.

P r o o f. Using the assumptions and the result of Lemma 3.1, we get

∥Φ(t, v, w)∥ := sup{∥z∥ : z ∈ Φ(t, v, w)}
≤ ∥B(t, v, w)∥ ηG(1 + ∥F (t, v)∥)
≤ ηG(1 + ηF )ηB(t)ΨB(∥v∥+ ∥w∥Cτ ). (3.8)
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542 T.D. Ke, N. Van Loi, V. Obukhovskii

Since Φ is u.s.c with compact convex values, the multimap Λ(t) = Φ(t, x(t),
xt) is (strongly) measurable due to [18, Proposition 1.3.1]. Thus by [18,
Theorem 1.3.1], it has the Castaing representation (see [18, Definition
1.3.3]) and hence PΦ(x) ̸= ∅ for x ∈ C.

To prove the second assertion, we use Lemma 2.3. Let {xk} ⊂ C
be such that xk → x∗, fk ∈ PΦ(xk). We see that {fk(t)} ⊂ C(t) :=

Φ(t, {xk(t), (xk)t}), and C(t) is a compact set for each t ∈ J . Further-
more, by (3.8) the sequence {fk} is integrably bounded (i.e., bounded by
an Lp-integrable function). Therefore {fk} is weakly relatively compact in
Lp(J ;Rn) (see [10]). Let fk ⇀ f∗. Then by Mazur’s lemma (see, e.g. [11]),

there are f̃k ∈ co{fi : i ≥ k} such that f̃k → f∗ in Lp(J ;Rn) and then

f̃k(t) → f∗(t) for a.e. t ∈ J , up to a subsequence. Observe that in our case,
the upper semicontinuity of Φ yields that

Φ(t, xk(t), (xk)t) ⊂ Φ(t, x∗(t), x∗t ) +Bϵ,

for all sufficiently large k, here ϵ > 0 is given and Bϵ is the ball in Rn

centered at origin with radius ϵ. So

fk(t) ∈ Φ(t, x∗(t), x∗t ) +Bϵ, for a.e. t ∈ J,

and the same inclusion holds for f̃k(t) thanks to the convexity of Φ(t, x∗(t),
x∗t ) + Bϵ. Hence, f∗(t) ∈ Φ(t, x∗(t), x∗t ) + Bϵ for a.e. t ∈ J . Since ϵ is
arbitrary, one gets f∗ ∈ PΦ(x

∗). The lemma is proved. 2

Proposition 3.1 ([27, Lemma 1]). Let P (t, s) be a family of linear
operators on Rn for t, s ∈ J, s ≤ t. Assume that P satisfies the following
conditions:

(P1) there exists a function ρ ∈ Lq(J ;R), q > 1 such that ∥P (t, s)∥ ≤
ρ(t− s) for all t, s ∈ J, s ≤ t;

(P2) ∥P (t, s) − P (r, s)∥ ≤ ϵ for 0 ≤ s ≤ r − ϵ, r < t = r + h ≤ T with
ϵ = ϵ(h) → 0 as h → 0.

Then the operator S : Lq′(J ;Rn) → C(J ;Rn) defined by

(Sg)(t) :=

∫ t

0
P (t, s)g(s)ds

maps any bounded set to an equicontinuous one, where q′ is the conjugate
of q : 1

q +
1
q′ = 1.

Lemma 3.3. The operator W defined by (3.6) is compact.
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P r o o f. We show that W (Ω) is relatively compact in CT for any
bounded set Ω ⊂ Lp(J ;Rn). Obviously, W (Ω)(t) is bounded for each t ∈ J .
Moreover, the operator

Q(t, s) = (t− s)α−1Pα(t− s)

satisfies the assumption of Proposition 3.1. Then it follows that W (Ω) is an
equicontinuous set. Therefore the conclusion follows by the Arzela-Ascoli
theorem. 2

Now we can show some properties of the solution multioperator Σ.

Lemma 3.4. Let (H1), (H2)(1)-(H2)(4) hold. Then the solution mul-
tioperator Σ is quasicompact and closed.

P r o o f. Since h is continuous and W is compact, it is easy to check
that Σ(K) is relatively compact for any compact set K ⊂ C. So it is a
quasicompact multimap.

Now let {xk} ⊂ C, xk → x∗, yk ∈ Σ(xk) and yk → y∗. We will verify
that y∗ ∈ Σ(x∗). Take fk ∈ PΦ(xk) such that

yk(t) = φ(t)− h(xk)(t), t ∈ [−τ, 0], (3.9)

yk(t) = Sα(t)[φ(0)− h(xk)(0)] +W (fk)(t), t ∈ J. (3.10)

Since PΦ is weakly u.s.c and {xk} is compact, {fk} is weakly compact and
one can assume that fk ⇀ f∗ in Lp(J ;Rn). Moreover, f∗ ∈ PΦ(x

∗). By the
compactness of W , we obtain W (fk) → W (f∗) in CT . Taking the limits of
(3.9)-(3.10) as k → ∞, we get

y∗(t) = φ(t)− h(x∗)(t), t ∈ [−τ, 0],

y∗(t) = Sα(t)[φ(0)− h(x∗)(0)] +W (f∗)(t), t ∈ J, f∗ ∈ PΦ(x
∗).

Thus y∗ ∈ Σ(x∗). The proof is complete. 2

Lemma 3.5. Assume (H1)-(H2). If ηhS
T
α < 1 then Σ is χT -condensing,

here ST
α = sup

t∈J
∥Sα(t)∥.

P r o o f. Let D ⊂ C be a bounded set. Then we have

Σ(D) = Σ1(D) + Σ2(D),

where
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Σ1(x)(t) =

{
Sα(t)[φ(0)− h(x)(0)], t ∈ J,

φ(t)− h(x)(t), t ∈ [−τ, 0];

Σ2(x)(t) =

{
{W (f)(t) : f ∈ PΦ(x)}, t ∈ J,

0, t ∈ [−τ, 0].

By the algebraic semi-additivity property of χT , we have

χT (Σ(D)) ≤ χT (Σ1(D)) + χT (Σ2(D)). (3.11)

For z1, z2 ∈ Σ1(D), there exist x1, x2 ∈ D such that

z1(t) =

{
Sα(t)[φ(0)− h(x1)(0)], t ∈ J,

φ(t)− h(x1)(t), t ∈ [−τ, 0],

z2(t) =

{
Sα(t)[φ(0)− h(x2)(0)], t ∈ J,

φ(t)− h(x2)(t), t ∈ [−τ, 0].

Then

∥z1(t)− z2(t)∥ ≤

{
∥Sα(t)∥∥h(x1)− h(x2)∥Cτ , t ∈ J,

∥h(x1)− h(x2)∥Cτ , t ∈ [−τ, 0].

Therefore

∥z1 − z2∥C ≤ ST
α ∥h(x1)− h(x2)∥Cτ ,

thanks to the fact that ST
α ≥ 1. This implies

χT (F1(D)) ≤ ST
αχτ (h(D)).

Employing (H2)(6), we have

χT (F1(D)) ≤ ηhS
T
α χT (D). (3.12)

Concerning Σ2, we first observe that PΦ(D) is bounded due to estimate
(3.8). Then using the compactness of W , we see that Σ2(D) is a relatively
compact set. Then χT (Σ2(D)) = 0. Combining (3.11)-(3.12), we have

χT (Σ(D)) ≤ ηhS
T
α χT (D).

Now if χT (D) ≤ χT (Σ(D)) then χT (D) ≤ ηhS
T
α χT (D). This implies

χT (D) = 0, thanks to the assumption that ηhS
T
α < 1. By the regularity of

χT , we have that D is relatively compact. The proof is complete. 2

Now we can state the main result of this section.
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Theorem 3.1. Assume (H1)− (H2). Then problem (3.4)-(3.5) has at
least one mild solution on [−τ, T ] provided ηhS

T
α < 1 and

lim inf
r→∞

[
ST
α

Ψh(r)

r
+ ηG(1 + ηF )

ΨB(2r)

r

× sup
t∈J

∫ t

0
(t−s)α−1∥Pα(t−s)∥ηB(s)ds

]
< 1. (3.13)

P r o o f. The assumption ηhS
T
α < 1 ensures that Σ is χT -condensing.

In addition, by Lemma 3.4 and Lemma 2.2, Σ is u.s.c. In order to apply
Theorem 2.1, it suffices to show that there exists R > 0 such that Σ(BR) ⊂
BR, where BR is the ball in C centered at origin with radius R.

Assume to the contrary that there exists a sequence {xk} ⊂ C such that
∥xk∥C ≤ k and yk ∈ Σ(xk) such that ∥yk∥C > k. By the definition of Σ,
one can take fk ∈ PΦ(xk) such that

yk(t) = φ(t)− h(xk)(t), t ∈ [−τ, 0],

yk(t) = Sα(t)[φ(0)− h(xk)(0)] +W (fk)(t), t ∈ J.

Then for t ∈ [−τ, 0] we have

∥yk(t)∥ ≤ ∥φ∥Cτ + ∥h(xk)∥Cτ

≤ ∥φ∥Cτ +Ψh(∥xk∥C) ≤ ∥φ∥Cτ +Ψh(k)

thanks to (H2)(5). For t ∈ J we get

∥yk(t)∥ ≤ ST
α (∥φ∥Cτ + ∥h(xk)∥Cτ ) + sup

t∈J
∥W (fk)(t)∥

≤ ST
α [∥φ∥Cτ +Ψh(∥xk∥C)] + sup

t∈J

∫ t

0
(t− s)α−1∥Pα(t− s)∥ ∥fk(s)∥ds

≤ ST
α [∥φ∥Cτ +Ψh(k)]

+ ηG(1 + ηF )ΨB(2k) sup
t∈J

∫ t

0
(t− s)α−1∥Pα(t− s)∥ηB(s)ds,

thanks to estimate (3.8). Since ST
α ≥ 1, we obtain

∥yk∥C≤ST
α [∥φ∥Cτ+Ψh(k)]+ηG(1+ηF )ΨB(2k) sup

t∈J

∫ t

0
(t−s)α−1∥Pα(t−s)∥ηB(s)ds.

Then

lim inf
k→∞

∥yk∥C
k

≤ lim inf
k→∞

[ST
α

Ψh(k)

k
+ηG(1+ηF )

ΨB(2k)

k
sup
t∈J

∫ t

0
(t−s)α−1∥Pα(t−s)∥ηB(s)ds].
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Thus lim inf
k→∞

∥yk∥C
k

< 1 due to assumption (3.13), and we get a contradic-

tion. The proof is complete. 2

4. Decay solutions

For a positive number γ, denote

BCγ = {x ∈ C([−τ,∞);Rn) : tγ∥x(t)∥ = O(1) as 0 < t → ∞}.

Then BCγ is a subspace of BC0, here BC0 := BC0([−τ,∞);Rn) is the
space of continuous functions on [−τ,∞) vanishing at infinity. It should be
noted that BC0 with the sup norm

∥x∥∞ = sup
t≥−τ

∥x(t)∥,

is a Banach space. In this section, we prove the existence of solutions to
(3.4)-(3.5) in BCγ . We need the following additional assumption:

(H3) there exists a > 0 such that ⟨−Az, z⟩ ≥ a∥z∥2 for all z ∈ Rn.

In addition, we replace (H2) with a stronger one:

(H2’) The functions B,F,G and h satisfy (H2) for all T > 0, with ΨB(r) =
r and Ψh(r) = νhr, where νh is a positive number.

We first have the following lemma.

Lemma 4.1. Let the hypotheses (H1), (H2’) and (H3) hold. Then
there exists ρ > 0 such that Σ(Bρ) ⊂ Bρ provided that

νhS
∞
α + 2ηG(1 + ηF ) sup

t≥0

∫ t

0
(t− s)α−1∥Pα(t− s)∥ηB(s)ds < 1, (4.1)

where Bρ is the closed ball in BC0([−τ,∞);Rn) with center at origin and
radius ρ, and S∞

α = sup
t≥0

∥Sα(t)∥.

P r o o f. The proof is similar to those as in the proof of Theorem 3.1,
but now with ΨB(r) = r and Ψh(r) = νhr. 2

Taking ρ from Lemma 4.1, we consider the following bounded closed
and convex set in BC0([−τ,∞);Rn):

Bα
ρ (R) = Bρ ∩ {x ∈ BCα : tα∥x(t)∥ ≤ R, ∀t ≥ 0}. (4.2)

Lemma 4.2. Let the hypotheses (H1), (H2’) and (H3) hold. Then
there exists R > 0 such that

Σ(Bα
ρ (R)) ⊂ Bα

ρ (R),
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provided that (4.1) is satisfied and

sup
t≥0

∫ t
2

0
(t− s)α−1ηB(s)ds < ∞, (4.3)

2α+1ηG(1 + ηF ) sup
t≥0

∫ t

t
2

(t− s)α−1∥Pα(t− s)∥ηB(s)ds < 1. (4.4)

P r o o f. By (H3), we have

∥etA∥ ≤ e−at, t ≥ 0.

So it follows from Proposition 2.1 that ∥Sα(t)∥, ∥Pα(t)∥ = O(t−α) as t → ∞.
Assume to the contrary that for each n = 1, 2, ... there exist xn ∈ Bα

ρ (n)
and yn ∈ Σ(xn) with

sup
t≥0

tα∥yn(t)∥ > n. (4.5)

Then one can find fn ∈ PΦ(xn) such that

yn(t) = Sα(t)[φ(0)− h(xn)(0)] +

∫ t

0
(t− s)α−1Pα(t− s)fn(s)ds,∀t > 0.

Using (H2’) and estimate (3.8), we have

∥yn(t)∥ ≤ ∥Sα(t)∥(∥φ∥Cτ + νh∥xn∥∞)

+ ηG(1 + ηF )

∫ t

0
(t− s)α−1∥Pα(t− s)∥ηB(s)(∥xn(s)∥+ ∥(xn)s∥Cτ )ds

= I1(t) + ηG(1 + ηF )[I2(t) + I3(t)], (4.6)

where

I1(t) = ∥Sα(t)∥(∥φ∥Cτ + νh∥xn∥∞),

I2(t) =

∫ t
2

0
(t− s)α−1∥Pα(t− s)∥ηB(s)(∥xn(s)∥+ ∥(xn)s∥Cτ )ds,

I3(t) =

∫ t

t
2

(t− s)α−1∥Pα(t− s)∥ηB(s)(∥xn(s)∥+ ∥(xn)s∥Cτ )ds.

Since ∥Sα(t)∥ = O(t−α) as t → ∞, we have

sup
t≥0

tαI1(t) ≤ S∗
α(∥φ∥Cτ + νhρ), (4.7)

where S∗
α = sup

t≥0
tα∥Sα(t)∥. Considering I2, we have

I2(t) =

∫ t
2

0
(t− s)α−1∥Pα(t− s)∥ηB(s)(∥xn(s)∥+ ∥(xn)s∥Cτ )ds

≤ 2ρ

∫ t
2

0
(t− s)α−1∥Pα(t− s)∥ηB(s)ds. (4.8)
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For s ≤ t
2 , one has

∥Pα(t− s)∥ ≤ C(t− s)−α ≤ C

(
t

2

)−α

, for some C > 0. (4.9)

Hence it follows from (4.8)-(4.9) that

sup
t≥0

tαI2(t) ≤ 2α+1ρC sup
t≥0

∫ t
2

0
(t− s)α−1ηB(s)ds, (4.10)

where the last term is finite due to (4.3). Now one observes that tα∥xn(t)∥ ≤
n for any t ≥ 0. Then for any σ > 0 and t > τ + σ, we get

tα∥(xn)t∥Cτ = tα sup
ζ∈[−τ,0]

∥xn(t+ ζ)∥

= tα sup
ζ∈[−τ,0]

(t+ ζ)−α(t+ ζ)α∥xn(t+ ζ)∥

≤ tα(t− τ)−α sup
ζ∈[−τ,0]

(t+ ζ)α∥xn(t+ ζ)∥

≤ n

(
τ + σ

σ

)α

.

For t ∈ [0, τ + σ] we have tα∥(xn)t∥Cτ ≤ (τ + σ)αρ. Then

tα∥(xn)t∥Cτ ≤ n

(
τ + σ

σ

)α

+ (τ + σ)αρ, ∀t ≥ 0.

The last inequality allows us to estimate I3 as follows

tαI3(t) = tα
∫ t

t
2

s−α(t−s)α−1∥Pα(t−s)∥ηB(s)(sα∥xn(s)∥+sα∥(xn)s∥Cτ )ds

≤ 2αzn(σ)

∫ t

t
2

(t−s)α−1∥Pα(t−s)∥ηB(s)ds, (4.11)

where

zn(σ) = n+ n

(
τ + σ

σ

)α

+ (τ + σ)αρ.
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Taking (4.6) into account and using (4.7), (4.10) and (4.11), we arrive at

lim
n→∞

1

n
sup
t≥0

tα∥yn(t)∥ ≤ lim
n→∞

1

n

[
sup
t≥0

tαI1(t) + ηG(1 + ηF ) sup
t≥0

tαI2(t)

]
+ lim

n→∞

1

n
ηG(1 + ηF ) sup

t≥0
tαI3(t)

= ηG(1 + ηF ) lim
n→∞

1

n
sup
t≥0

tαI3(t)

≤ 2α
[
1 +

(
τ + σ

σ

)α]
ηG(1 + ηF ) sup

t≥0

∫ t

t
2

(t− s)α−1∥Pα(t− s)∥ηB(s)ds.

By (4.4), one can choose σ > 0 such that lim
n→∞

1

n
sup
t≥0

tα∥yn(t)∥ < 1 which

contradicts (4.5). The proof is complete. 2

By the last lemma, from now on one can consider

Σ : Bα
ρ (R) → P(Bα

ρ (R)).

We need the condensivity property of Σ.

Lemma 4.3. Let the hypotheses of Lemma 4.2 hold. Then Σ is χ∗-
condensing provided ηhS

∞
α < 1, where S∞

α = supt≥0 ∥Sα(t)∥.

P r o o f. Let D ⊂ Bα
ρ (R) be a bounded set. Recall that χ∗(D) =

χ∞(D) + d∞(D), where χ∞ and d∞ are defined by (2.2) and (2.4), respec-
tively. By the same arguments as in the proof of Lemma 3.5, we have

χT (πT (Σ(D))) ≤ ηh sup
t∈[0,T ]

∥Sα(t)∥χT (πT (D)),∀T > 0.

Therefore

χ∞(Σ(D)) ≤ ηhS
∞
α χ∞(D). (4.12)

In the rest of the proof, we will show that d∞(Σ(D)) = 0. Obviously, for
any y ∈ Σ(D) we have ∥y(t)∥ ≤ Rt−α for all t ≥ T > 0. So

sup
t≥T

∥y(t)∥ ≤ RT−α.

This implies dT (D) ≤ RT−α, and hence d∞(D) = lim
T→∞

dT (D) = 0. This

assertion together with (4.12) yields

χ∗(Σ(D)) ≤ ηhS
∞
α χ∗(D).

Since χ∗ is regular due to Lemma 2.1, the last inequality guarantees that
Σ is χ∗-condensing as desired. 2
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Lemma 4.4. Let the hypotheses of Lemma 4.2 hold. Then Σ :
Bα

ρ (R) → P(Bα
ρ (R)) is u.s.c.

P r o o f. We apply Lemma 2.2 again. We first show the closedness of
Σ. Let xk ∈ Bα

ρ (R), xk → x∗, yk ∈ Σ(xk) and yk → y∗ in Bα
ρ (R). We prove

that y∗ ∈ Σ(x∗), i.e.

y∗(t) ∈ Σ(x∗)(t), ∀t ∈ R+.

Let t > 0, then taking T > t and arguing as in the proof of Lemma 3.4, we
get that Σ is closed.

It remains to check the quasi-compactness of Σ. Let K ⊂ Bα
ρ (R) be

a compact set and {yk} ⊂ Σ(K). Then there exists {xk} ⊂ K such that
yk ∈ Σ(xk). Let fk ∈ PΦ(xk) be such that

yk(t) = φ(t)− h(xk)(t), t ∈ [−τ, 0],

yk(t) = Sα(t)xk(0) +W (fk)(t), t > 0.

Obviously, for all T > 0 we have that {πT (yk)} is relatively compact. There-
fore

χ∞({yk}) = sup
T>0

χT ({πT (yk)}) = 0. (4.13)

Since yk ∈ Bα
ρ (R), by using the same arguments as in the proof of Lemma

4.3 we obtain

d∞({yk}) = 0. (4.14)

It follows from (4.13)-(4.14) that χ∗({yk}) = 0. Then {yk} is relatively
compact, thanks to Lemma 2.1.

Finally, the closedness and quasi-compactness of Σ imply that this op-
erator is u.s.c on Bα

ρ (R). 2

The following theorem is our main result.

Theorem 4.1. Let the hypotheses of Lemma 4.2 hold. If ηhS
∞
α < 1

then the problem (3.4)-(3.5) has a compact set of solutions on [−τ,∞)
satisfying

tα∥x(t)∥ = O(1) as t → ∞.

P r o o f. If ηhS
∞
α < 1 then Σ is χ∗-condensing due to Lemma 4.3. By

Lemma 4.4, Σ is u.s.c. Employing Theorem 2.1 again, we get the conclusion.
2
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